Issue 14, 2025

Photoinduced polyelectrolyte complexation for the formation of stable films with reversible crosslinking

Abstract

Thin films formed by complexation of oppositely charged polyelectrolytes have significant potential in applications such as separation membranes, biocompatible or anticorrosion coatings, and drug delivery systems. While layer-by-layer deposition is a reliable method for producing conformal films, this multi-step process limits scalability. In this study, we functionalize polymers with photoactive protecting and crosslinking groups, allowing a one-step approach for preparing polyelectrolyte complex (PEC) films. To achieve this goal, we introduced o-nitrobenzyl and coumarin groups into a polyanion. The o-nitrobenzyl protecting groups can be selectively deprotected upon exposure to 365 nm light, revealing charged pendent groups that initiate polyelectrolyte complexation. Simultaneously, the coumarin units in the copolymers undergo dimerization, enhancing the solvochemical stability of the PEC films. Notably, short-wave UV irradiation (254 nm) enables retrocyclization of the coumarin dimers, returning the PEC film to its uncrosslinked state. These UV-driven deprotection, crosslinking, and de-crosslinking processes provide a versatile and tunable platform for fabricating reversibly crosslinked films. By integrating photoresponsive polymers and reversible covalent linkages, this approach offers new opportunities for designing PEC materials with tunable dynamic properties for advanced applications.

Graphical abstract: Photoinduced polyelectrolyte complexation for the formation of stable films with reversible crosslinking

Supplementary files

Article information

Article type
Edge Article
Submitted
23 Jan 2025
Accepted
22 Feb 2025
First published
07 Mar 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 5976-5985

Photoinduced polyelectrolyte complexation for the formation of stable films with reversible crosslinking

K. Auepattana-Aumrung, L. M. Bishop, K. C. Stevens, K. A. Stewart, D. Crespy and B. S. Sumerlin, Chem. Sci., 2025, 16, 5976 DOI: 10.1039/D5SC00637F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements