Probing the Ferredoxin:Hydrogenase Electron Transfer Complex by Infrared Difference Spectroscopy

Abstract

Ferredoxins are small iron-sulfur proteins that engage in one-electron transfer with oxidoreductases across all domains of life. The catalyzed reactions often include multiple electrons, e.g., in the two-electron reduction of NADP+ during photosynthesis or the reduction of protons to H2 by the metalloenzyme hydrogenase. To date, the microscopic details of how ferredoxins facilitate multiple electron redox chemistry are unknown. Ferredoxins of the Allochromatium vinosum subfamily contain two [4Fe-4S] clusters, which allows for two one-electron transfer reactions. However, the iron-sulfur clusters of 2[4Fe-4S]-type ferredoxins typically have very similar reduction potentials and conclusive evidence for the transfer of two electrons during a single protein-protein interaction (PPI) has not been reported. In this work, the electron transfer complexes between clostridial 2[4Fe-4S] ferredoxin, CpFd, and [FeFe]-hydrogenases from both Clostridium pasteurianum (CpI) and Chlamydomonas reinhardtii (CrHydA) were investigated. Introducing a non-canonical amino acid near to one of the iron-sulfur clusters of CpFd permitted the quantification of electric field changes via the vibrational Stark effect by Fourier-transform infrared (FTIR) spectroscopy. Upon reduction, in situ FTIR difference spectroscopy reported on protein structural changes and microscale thermophoresis revealed that the affinity between ferredoxin and hydrogenase is modulated by redox-dependent PPIs. Prompted by these findings, we suggest a model how ferredoxin efficiently facilitates multiple electron redox chemistry based on individual one-electron transfer reactions.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
21 Jan 2025
Accepted
27 Apr 2025
First published
30 Apr 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2025, Accepted Manuscript

Probing the Ferredoxin:Hydrogenase Electron Transfer Complex by Infrared Difference Spectroscopy

S. Sahin, J. Brazard, K. Zuchan, T. B. M. Adachi, U. Mühlenhoff, R. D. Milton and S. T. Stripp, Chem. Sci., 2025, Accepted Manuscript , DOI: 10.1039/D5SC00550G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements