Issue 17, 2025

Modeling thermocatalytic systems for CO2 hydrogenation to methanol

Abstract

The hydrogenation of CO2 to CH3OH over Cu-based catalysts holds significant potential for advancing carbon sequestration and sustainable chemical processes. While numerous studies have focused on catalyst development, the environmental effects on underlying reaction mechanisms have yet to be fully understood. In this work, we develop a grand potential theory for a comprehensive analysis of CO2 hydrogenation to CH3OH over Cu (111) and Cu (211) surfaces. By integrating electronic and classical density functional calculations to bridge the “pressure gap”, the theoretical results revealed that the HCOO* formation rate may vary by several orders of magnitude depending on reaction conditions. The grand potential theory enables us to elucidate the molecular mechanisms underlying the need for high H2 pressure, the prevalence of saturated CO2 adsorption, and the important roles of CO and H2O in hydrogenation. Moreover, this study addressed and clarified controversies over CO2versus CO adsorption and hydrogenation, the formate versus carboxy pathways, and the difference in HCOO* hydrogenation activity between Cu (111) and Cu (211) surfaces. The theoretical analysis offers a new perspective for optimizing reaction conditions and catalyst performance in methanol synthesis and can be generalized to enhance our understanding of heterogeneous catalysis under industrially relevant conditions.

Graphical abstract: Modeling thermocatalytic systems for CO2 hydrogenation to methanol

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
09 Jan 2025
Accepted
10 Mar 2025
First published
10 Mar 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 7477-7488

Modeling thermocatalytic systems for CO2 hydrogenation to methanol

J. Sun and J. Wu, Chem. Sci., 2025, 16, 7477 DOI: 10.1039/D5SC00211G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements