Issue 18, 2025

Unconventional pathway for the gas-phase formation of 14π-PAHs via self-reaction of the resonantly stabilized radical fulvenallenyl (C7H5˙)

Abstract

Resonantly stabilized free radicals (RSFRs) are contemplated to be the reactive intermediates in molecular mass-growth processes leading to polycyclic aromatic hydrocarbons (PAHs), which are prevalent in deep space and on Earth. The self-reaction routes of two RSFRs have been recognized as fundamental but more-efficient pathways to form fused benzenoid rings. The present experiment, which exploits a chemical microreactor in combination with an isomer-selective identification technique through fragment-free photoionization utilizing a tunable vacuum ultraviolet (VUV) light in tandem with the detection of the ionized molecules by a high-resolution reflection time-of-flight mass spectrometer (Re-TOF-MS), provides compelling evidence for the formation of phenanthrene and a minor amount of anthracene in the presence of fulvenallenyl (C7H5˙). Further theoretical calculations of the potential energy surfaces of C14H10 and C14H11 reveal that phenanthrene and anthracene can be efficiently produced via a hydrogen-assisted multi-step mechanism [C7H5˙ + C7H5˙ → i3, i3 = (3,4-di(cyclopenta-2,4-dien-1-ylidene)cyclobut-1-ene); i3 + H → phenanthrene + H/anthracene + H or i3 + H → i8 + H → phenanthrene + H/anthracene + H, i8 = (1-(cyclopenta-2,4-dien-1-ylidene)indene)] at low pressures, rather than through the one-step recombination–isomerization of fulvenallenyl radicals. This study provides a novel growth mechanism for tricyclic PAHs, especially in hydrogen-rich environments such as combustion and interstellar environments, which advances the knowledge of PAH propagation and even the formation mechanisms of carbonaceous nanoparticles in our universe.

Graphical abstract: Unconventional pathway for the gas-phase formation of 14π-PAHs via self-reaction of the resonantly stabilized radical fulvenallenyl (C7H5˙)

Supplementary files

Article information

Article type
Edge Article
Submitted
08 Jan 2025
Accepted
06 Mar 2025
First published
07 Mar 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 7864-7875

Unconventional pathway for the gas-phase formation of 14π-PAHs via self-reaction of the resonantly stabilized radical fulvenallenyl (C7H5˙)

W. Li, M. Wu, C. Wang, J. Huang, J. Yang, M. Xu, F. Zhang, T. Yang and L. Zhao, Chem. Sci., 2025, 16, 7864 DOI: 10.1039/D5SC00160A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements