Facile post-synthesis of isomeric covalent organic frameworks via precise pore surface engineering

Abstract

Isomeric covalent organic frameworks (COFs) have developed dramatically due to having the same chemical composition but distinct physicochemical characteristics. However, exploring novel synthetic strategies for the precise construction of COFs with isomeric pore microenvironments remains challenging and in its infancy. In this contribution, we have developed a controllable, simple, and efficient post-synthesis modification strategy to design isomeric COFs via precise pore surface engineering. The as-prepared isomeric COFs showed comparable crystallinity and porosity but significantly different pore microenvironments. Interestingly, the isomeric moieties endow the isomeric COFs with specific capture performances and excellent recycling ability. The specific interactions between these isomeric COFs and guests are verified by fluorescence spectra and theoretical calculation. This study will open a novel avenue for the construction of isomeric COFs and facilitate the development of isomeric COFs with specific properties.

Graphical abstract: Facile post-synthesis of isomeric covalent organic frameworks via precise pore surface engineering

Supplementary files

Article information

Article type
Edge Article
Submitted
07 Jan 2025
Accepted
14 Apr 2025
First published
15 Apr 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

Facile post-synthesis of isomeric covalent organic frameworks via precise pore surface engineering

Y. Liu, Y. Chen, K. Shi, H. Peng and C. Lu, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC00121H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements