Issue 16, 2025

High-affinity 1 : 2 recognition based on naphthyl-azocalix[4]arene and its application as a cleavable noncovalent connector in constructing responsive supramolecular polymeric materials

Abstract

Macrocyclic hosts which can bind two guests simultaneously with high affinity, such as cucurbit[8]uril, are highly useful for a wide range of applications by acting as noncovalent connectors. However, the integration of stimuli-controlled release properties into such robust noncovalent connectors would be even more desirable. Here, we introduce Naph-SAC4A, a naphthyl-extended deep-cavity azocalix[4]arene with hypoxia-responsiveness, which exhibits exceptional 1 : 2 hosting abilities for organic dyes in aqueous solution with affinities ranging from 1014 to 1016 M−2. Furthermore, Naph-SAC4A was employed as a robust hypoxia-cleavable noncovalent connector to construct linear supramolecular polymers and crosslinked supramolecular hydrogels. Both structures exhibit responsiveness to hypoxic stimuli. With its high-affinity 1 : 2 recognition, unique hypoxia-responsiveness, and easy accessibility, Naph-SAC4A holds great potential for smart supramolecular polymeric materials.

Graphical abstract: High-affinity 1 : 2 recognition based on naphthyl-azocalix[4]arene and its application as a cleavable noncovalent connector in constructing responsive supramolecular polymeric materials

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
06 Jan 2025
Accepted
14 Mar 2025
First published
19 Mar 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 7066-7076

High-affinity 1 : 2 recognition based on naphthyl-azocalix[4]arene and its application as a cleavable noncovalent connector in constructing responsive supramolecular polymeric materials

S. Yao, A. Ying, W. Geng, F. Chen, X. Hu, K. Cai and D. Guo, Chem. Sci., 2025, 16, 7066 DOI: 10.1039/D5SC00075K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements