Pd single atoms on g-C3N4 photocatalysts: minimum loading for maximum activity†
Abstract
Noble metal single atoms (SAs) on semiconductors are increasingly explored as co-catalysts to enhance the efficiency of photocatalytic hydrogen production. In this study, we introduce a “spontaneous deposition” approach to anchor Pd SAs onto graphitic carbon nitride (g-C3N4) using a highly dilute tetraaminepalladium(II) chloride precursor. Maximized photocatalytic activity and significantly reduced charge transfer resistance can be achieved with a remarkably low Pd loading of 0.05 wt% using this approach. The resulting Pd SA-modified g-C3N4 demonstrates a remarkable hydrogen production efficiency of 0.24 mmol h−1 mg−1 Pd, which is >50 times larger than that of Pd nanoparticles deposited on g-C3N4 via conventional photodeposition. This significant enhancement in catalytic performance is attributed to improved electron transfer facilitated by the optimal coordination of Pd SAs within the g-C3N4 structure.