Chemodivergent dearomatization of benzene-linked O-oxime esters via EnT-induced radical cross-coupling†‡
Abstract
Radical-mediated dearomatization strategies offer a blueprint for building value-added and synthetically valuable three-dimensional skeletons from readily available aromatic starting materials. Herein, we report a novel strategy by leveraging benzene-linked O-oxime esters as triply functionalized precursors to form two distinct persistent radicals under a chemodivergent pathway. These radicals then couple with a cyclohexadienyl radical for either carboamination or carbo-aminoalkylation. Remarkably, a series of 4-(2-aminoethyl)anilines derivatives featuring all-carbon quaternary centers, along with the formation of four different types of chemical bonds, are efficiently constructed through a unique rearomatization cascade in the carboamination. Importantly, employing DMPU as the hydrogen atom transfer (HAT) donor strategically diverts the reaction pathway from the C–N bond formation towards the C–C bond formation. Our mechanistic explorations support a sequential HAT/energy transfer (EnT)/HAT cascade as the key stage for carbo-aminoalkylation involving the N-center iminyl radical. Significantly, this work demonstrates the elegant expansion of divergent C–N and C–C bond formation using the imine moiety within O-oxime esters as the bifunctional reagent, and it broadens the chemical space of both benzenes and O-oxime esters in radical-mediated transformations.