Unusual one dimensional cascade effect in the thermal and photo-induced switching of azobenzene derivatives on a graphite surface†
Abstract
Harnessing cooperative switching opens possibilities for engineering the responses of molecular films to external triggers and provides opportunities to control the directionality of switching/reactions and design novel nanostructures. Here, we demonstrate a one dimensional (1D) cascade effect in the thermal- and photo-induced switching of azobenzene derivatives deposited on a graphite surface. Upon thermal- and photo-induction, molecules switch between their geometric states (trans and cis) along a selected lattice within the assembly. We explore the switching at the molecular level using atomic force microscopy (AFM) and scanning tunneling microscopy (STM) and reveal that the 1D cascading effect proceeds along the lattice direction where the inter-molecular interaction is the strongest. Theoretical calculations and experiments reveal a cascading effect of up to 350 molecules for photo-induced and 530 molecules for thermal-induced switching along a given lattice.