Unlocking coordination sites of metal–organic frameworks for high-density and accessible copper nanoparticles toward electrochemical nitrate reduction to ammonia†
Abstract
Ordered pore engineering of metal–organic framework (MOF)-based catalysts by soft-template strategies can facilitate the mass transfer of reactants during heterogeneous electrocatalysis. Besides, the abundant open coordination sites generated by the removal of surfactants also open up a new avenue for incorporating active moieties within the framework; however, such studies are still limited. Herein, a mesoporous cerium-based MOF, MUiO-66(Ce), is synthesized by introducing a pluronic triblock copolymer as a template, where abundant open coordination sites are found to be present on the hexa-cerium nodes. By providing rich Ce–OH/Ce–OH2 sites, plenty of copper moieties are installed on the framework (denoted as Cu-MUiO-66(Ce)). After the in situ reduction process, a high density of copper nanoparticles is confined within MUiO-66(Ce), and Cu@MUiO-66(Ce) is thus obtained. With a high loading of active copper sites and efficient diffusion of reactants, the Cu@MUiO-66(Ce)-modified electrode can achieve an ammonia production rate of 1.875 mg h−1 mgcatalyst−1 and a faradaic efficiency of 88.7% for nitrate-to-ammonia reduction. Findings here shed light on the importance of pore engineering of MOF-based catalysts for unlocking open coordination sites and facilitating the mass transfer to enhance the electrocatalytic activity.