Issue 5, 2025

Chemodynamic covalent adaptable network-induced robust, self-healing, and degradable fluorescent elastomers for multicolor information encryption

Abstract

Elastomers are of great significance in developing smart materials for information encryption, and their unique self-healing and highly flexible properties provide innovative solutions to enhance security and anti-counterfeiting effectiveness. However, challenges remain in the multifunctional combination of mechanical properties, self-healing, degradability, and luminescence of these materials. Herein, a chemodynamic covalent adaptable network (CCAN)-induced robust, self-healing, and degradable fluorescent elastomer is proposed. Thanks to the CCANs, the resulting elastomer exhibits a tensile strength of 33.44 MPa (300 times higher than that of a linear elastomer) and an elongation at break of 1265%, and its mechanical properties can be restored to about 20 MPa after 72 h of healing at room temperature, and a self-healing efficiency of 94.67% can be realized for 24 h at 70 °C. Simultaneously, the dynamic chemical balance of keto and enol structural transitions of curcumin chain segments can be driven by CCANs, realizing multi-color (from yellow to violet) display and broad wavelength (300–500 nm) excitation, which in turn enables surface read-write and color rosette and QR code pattern printing. In addition, it can also achieve adaptive degradation under biological, alkaline, and hot water conditions. This work has guiding significance for developing the next generation of high-performance multifunctional elastomer materials, which have potential applications in the field of smart anti-counterfeiting materials and smart flexible optoelectronics.

Graphical abstract: Chemodynamic covalent adaptable network-induced robust, self-healing, and degradable fluorescent elastomers for multicolor information encryption

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
09 Oct 2024
Accepted
21 Dec 2024
First published
30 Dec 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 2295-2306

Chemodynamic covalent adaptable network-induced robust, self-healing, and degradable fluorescent elastomers for multicolor information encryption

C. Li, X. Su, C. Cao, X. Li and M. Zou, Chem. Sci., 2025, 16, 2295 DOI: 10.1039/D4SC06855F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements