Chemistry of catalytic cracking of cyclohexene and 1-methylcyclopentene†
Abstract
Whether cycloalkanes undergo six- or five-membered ring-opening reaction pathways remains controversial. In this work, the catalytic cracking reactions of cyclohexene and 1-methylcyclopentene, as model compounds, were investigated in a pulse microreactor. The characteristics of the reactions of the two model compounds were compared in terms of isomerization, cracking, and hydrogen transfer reaction, and the reasons for the differences in their catalytic reactions were analyzed in combination with thermodynamic and molecular simulation calculations. The results have shown that the catalytic cracking product distributions of cyclohexene and 1-methylcyclopentene were similar owing to their easy mutual isomerization; the five-membered ring-opening cracking pathway was more thermodynamically advantageous than that of six-membered ring-opening cracking, and therefore, the yield of the ring-opening cracking product of 1-methylcyclopentene was comparatively higher; the main products of the hydrogen transfer reaction of the two compounds were alkanes and aromatic hydrocarbons. By comparing the product distributions and reaction activation energies, the ring-opening reaction pathways were clarified, and the catalytic cracking reaction networks of cyclohexene and 1-methylcyclopentene were established.