Issue 56, 2025, Issue in Progress

Interferometric optical sensors based on porous silicon grafted with styrenic moieties for highly enhanced VOC detection

Abstract

The majority of volatile organic compounds (VOCs) are hazardous pollutants that pose significant risks to human health and the environment. Thus, the development of a smart sensing system for the early identification of VOCs would be in high demand, particularly those enabling rapid detection with high sensitivity and long-term stability. In this study, an interferometric optical sensor was rationally devised through the facile non-atmospheric thermolysis of polystyrene (PS) pre-loaded into a porous silicon (pSi) template prepared via electrochemical anodization. During the thermolysis, styrenic carbon fragments were covalently grafted onto the pore walls of pSi to form a PS-grafted pSi composite (pSi-PS). This composite was subsequently utilized as a scaffold for grafting poly(4-chlorostyrene) (PPCS) via a second thermolysis step, consequently yielding the double-grafted pSi composite (pSi-PS-PPCS). The obtained samples were subsequently employed as an interferometric optical sensor for the sensitive detection of various VOCs, including ethanol, isopropanol, isobutanol, n-hexane, methyl ethyl ketone (M. E. K.), and ethyl acetate. The sensitivity of the optical response to those VOCs exhibited the following order: n-hexane < ethanol < isopropanol < M. E. K. < isobutanol < ethyl acetate. Notably, the double-grafted pSi-PS-PPCS sensor exhibited significantly higher sensitivity than both pristine pSi and single-grafted pSi-PS. The highly enhanced sensitivity of pSi-PS-PPCS, particularly toward isobutanol and ethyl acetate vapors, was mainly attributed to strong intermolecular interactions (such as hydrophobic, hydrogen bonding effects and/or strong interplay of π–π interactions) between the VOC analytes and the chlorine-substituted phenyl moieties of the grafted PPCS.

Graphical abstract: Interferometric optical sensors based on porous silicon grafted with styrenic moieties for highly enhanced VOC detection

Supplementary files

Article information

Article type
Paper
Submitted
24 Sep 2025
Accepted
27 Nov 2025
First published
05 Dec 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 48083-48091

Interferometric optical sensors based on porous silicon grafted with styrenic moieties for highly enhanced VOC detection

V. Vo, Abhijit. N. Kadam, T. Nguyen and S. Lee, RSC Adv., 2025, 15, 48083 DOI: 10.1039/D5RA07263H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements