Issue 45, 2025, Issue in Progress

Push–pull heterocycles and beyond: recent developments in absorption, emission, and ICT properties

Abstract

Heterocyclic scaffolds represent a cornerstone in the development of advanced organic materials owing to their tunable electronic structures and diverse photophysical properties. Recent studies have demonstrated significant progress in the design and synthesis of heterocyclic chromophores, particularly focusing on their absorption and emission behaviors, donor–acceptor interactions, intramolecular charge transfer (ICT), and solvent-dependent spectral shifts. In this review, we present for the first time a comprehensive summary of the literature reported during 2024–2025, covering a wide range of systems including indole–coumarins, 3-cyano-2-pyridones, tetracyanobuta-1,3-diene (TCBD) derivatives, highly annulated boron-dipyrromethenes (BODIPYs) and pyrimidine-based boron complexes. Key discussions emphasize how structural modifications, solvent polarity, and push–pull effects influence band gaps, bathochromic and hypsochromic shifts, fluorescence quantum yields, and near-infrared (NIR) emission properties. By correlating structure–property relationships, this review provides important insights into molecular design strategies and highlights the potential of heterocyclic chromophores as promising candidates for next-generation optoelectronic, sensing, and photonic applications.

Graphical abstract: Push–pull heterocycles and beyond: recent developments in absorption, emission, and ICT properties

Article information

Article type
Review Article
Submitted
03 Sep 2025
Accepted
02 Oct 2025
First published
08 Oct 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 37609-37644

Push–pull heterocycles and beyond: recent developments in absorption, emission, and ICT properties

M. Essid and E. U. Mughal, RSC Adv., 2025, 15, 37609 DOI: 10.1039/D5RA06623A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements