Issue 44, 2025, Issue in Progress

Engineering a GelMA–dECM-based 3D bioprinted liver fibrosis model: methotrexate-induced functional and molecular validation

Abstract

Three-dimensional (3D) bioprinting represents a cutting-edge advancement in additive manufacturing, offering unprecedented precision in fabricating in vitro models that recapitulate native tissue architecture and function. Here, we present the fabrication of a bioprinted hepatic construct using a composite bioink composed of in-house synthesized gelatin methacryloyl (GelMA), rat liver-derived decellularized extracellular matrix (dECM), and HepG2 cells. GelMA imparted mechanical integrity and biocompatibility, while the liver-specific dECM provided bioactive cues critical for recapitulating the hepatic microenvironment. Constructs were crosslinked using microbial transglutaminase and a photoinitiator to ensure structural stability and shape fidelity. Functional characterization included cytocompatibility assays (MTT, live/dead), metabolic activity assays (albumin and urea secretion), and liver-specific enzyme analysis (LDH, ALT, and ALP), alongside gene expression profiling, all of which confirmed hepatic function within the constructs. This synergy enhances cellular functionality and supports accurate fibrosis modeling for translational research. To establish a fibrosis model, methotrexate (MTX) was introduced, resulting in functional decline and upregulation of fibrosis-associated genes, thereby validating the fibrotic phenotype. This study demonstrates the development of a robust and physiologically relevant 3D bioprinted in vitro platform for modeling MTX-induced liver fibrosis, providing a promising tool for preclinical drug screening and translational research in hepatic disease. This study demonstrates a robust and physiologically relevant 3D bioprinted in vitro model of methotrexate-induced liver fibrosis, offering a valuable platform for translational applications in drug screening and hepatic disease modelling.

Graphical abstract: Engineering a GelMA–dECM-based 3D bioprinted liver fibrosis model: methotrexate-induced functional and molecular validation

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
13 Aug 2025
Accepted
29 Sep 2025
First published
06 Oct 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 37012-37026

Engineering a GelMA–dECM-based 3D bioprinted liver fibrosis model: methotrexate-induced functional and molecular validation

M. Gadre and K. S. Vasanthan, RSC Adv., 2025, 15, 37012 DOI: 10.1039/D5RA05955K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements