Issue 33, 2025, Issue in Progress

Feature-rich fundamental properties of hydrogen-adsorbed armchair graphene nanoribbons: insights from first-principles calculations

Abstract

Using first-principles calculations, we report on the notable structural, electronic, and magnetic properties of hydrogen-adsorbed 7-armchair graphene nanoribbons (7-AGNR) at various adatom concentrations and distributions. Key findings include optimal structural parameters, adsorption energies, one-dimensional electronic band structures, density of states (DOS), charge density distributions, charge density differences, and spin density distributions. Our results indicate that hydrogen atoms preferentially adsorb on the top sites of carbon atoms, with double-side adsorption being more stable than single-side adsorption. Even-hydrogenated 7-AGNR configurations behave as nonmagnetic semiconductors with varying bandgaps, while odd-hydrogenated configurations exhibit ferromagnetic behavior with different bandgaps. The number of unpaired hydrogen adatoms influences the magnetic moments of these configurations. Specifically, the magnetic moment can reach up to 7 μB for complete single-side hydrogenation, while all other odd-hydrogenated configurations generally display a magnetic moment of 1 μB. This behavior is attributed to the complex hybridization between hydrogen and carbon orbitals. This research highlights the potential of hydrogen-adsorbed 7-AGNR systems for applications in advanced electronics, optoelectronics, and spintronics.

Graphical abstract: Feature-rich fundamental properties of hydrogen-adsorbed armchair graphene nanoribbons: insights from first-principles calculations

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
18 Jun 2025
Accepted
24 Jul 2025
First published
01 Aug 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 27139-27153

Feature-rich fundamental properties of hydrogen-adsorbed armchair graphene nanoribbons: insights from first-principles calculations

D. M. Hoat, K. D. Vo, N. T. T. Tran, Q. D. Ho, M. T. Dang, H. A. Huy, D. T. Nhan and D. K. Nguyen, RSC Adv., 2025, 15, 27139 DOI: 10.1039/D5RA04327A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements