Issue 37, 2025, Issue in Progress

Enhanced physical, mechanical and barrier properties of chitosan films via tannic acid cross-linking

Abstract

Growing environmental concerns over the extensive use of petroleum-based polymer packaging have spurred interest in the development of bio-based alternatives. In this work, the incorporation of tannic acid as a cross-linker into chitosan at concentrations of 0–60 wt% was explored. The resulting cross-linking between chitosan chains induced by tannic acid through hydrogen and Schiff-base covalent bonding was confirmed by X-ray photoelectron spectroscopy and gel content measurements. This significantly enhanced the films' thermal stability, water uptake, mechanical properties, and barrier properties. The cross-linking minimized the interaction between chitosan functional groups and water molecules, improving water resistance. The chitosan films with 30 wt% tannic acid displayed significant improvements in tensile stress and Young's modulus by 74% and 110%, respectively, compared with the neat chitosan films, which were ascribed to the strong interaction between chitosan and tannic acid. In addition, the cross-linked films effectively blocked UV light transmission while maintaining transparency levels greater than 85%, offering potential protection against photo-oxidation and photo-discoloration of food produce caused by sunlight exposure. However, increasing tannic acid loading negatively affected the antibacterial properties, wettability, and appearance (increased yellowness) of the cross-linked chitosan films. Furthermore, packaging developed from these cross-linked chitosan films successfully extended the shelf life of chilies, demonstrating their application in food packaging. Compared with petroleum-based polymers and biopolymer packaging films, these cross-linked chitosan films offer promising mechanical and barrier properties and UV-shielding capability, making them a sustainable alternative for packaging applications.

Graphical abstract: Enhanced physical, mechanical and barrier properties of chitosan films via tannic acid cross-linking

Article information

Article type
Paper
Submitted
14 Jun 2025
Accepted
15 Aug 2025
First published
28 Aug 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 30742-30757

Enhanced physical, mechanical and barrier properties of chitosan films via tannic acid cross-linking

S. Tanpichai, K. Yuwawech, E. Wimolmala, Y. Srimarut, W. Woraprayote and Y. Malila, RSC Adv., 2025, 15, 30742 DOI: 10.1039/D5RA04227E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements