Issue 45, 2025, Issue in Progress

Electrochemical sensor based on molecularly imprinted polymer and voltammetric electronic tongue technology: an efficient strategy for sensitive detection of tobramycin residues

Abstract

Tobramycin (TOB) is an aminoglycoside antibiotic widely used to treat chronic lung infections and other bacterial diseases. However, TOB residues may persist in food products derived from animals treated with antibiotics, posing a risk of promoting antibiotic resistance in consumers. This highlights the urgent need for sensitive and selective methods to detect TOB residues in food. In this study, both an electrochemical sensor based on a conductive molecularly imprinted polymer (MIP) and a voltammetric electronic tongue (VET) system were developed for the detection of TOB. The MIP sensor was fabricated by electropolymerizing polyaniline onto a screen-printed gold electrode (Au-SPE), with the sensitivity further enhanced by the incorporation of silver nanoparticles. Surface morphology characterization of the modified electrodes was carried out using scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) were employed to characterize the sensors during both their fabrication and the TOB detection process. The sensors exhibited a detection limit of 1.9 pg mL−1 within a concentration range of 0.001–60 pg mL−1. The MIP sensors were selective for TOB, and were successfully applied to the detection of TOB residues in various food samples, including chicken, beef, turkey, chicken eggs, and milk. The VET system combined with chemometric methods particularly demonstrated its effectiveness in detecting TOB in milk samples. Principal component analysis (PCA) and discriminant function analysis (DFA) confirmed the ability of the VET system to differentiate between TOB-contaminated and uncontaminated milk samples, with PCA explaining 96.94% of the variance. This study presents a significant advance in the electrochemical detection of antibiotics in food, demonstrating the potential of MIP-based sensors, VET system for practical applications in food safety monitoring, and public health analysis.

Graphical abstract: Electrochemical sensor based on molecularly imprinted polymer and voltammetric electronic tongue technology: an efficient strategy for sensitive detection of tobramycin residues

Article information

Article type
Paper
Submitted
04 Jun 2025
Accepted
08 Sep 2025
First published
09 Oct 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 37579-37596

Electrochemical sensor based on molecularly imprinted polymer and voltammetric electronic tongue technology: an efficient strategy for sensitive detection of tobramycin residues

M. War, F. Şen, E. Halvaci, B. Bouchikhi and N. El Bari, RSC Adv., 2025, 15, 37579 DOI: 10.1039/D5RA03963K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements