Phase evolution and morphological transformation of high-entropy alloy FeMnNiAlSiC nanoparticles via sequential picosecond laser ablation and nanosecond laser annealing
Abstract
This study investigates the morphological evolution and enhanced crystallinity of FeMnNiAlSiC high-entropy alloy (HEA) nanoparticles (NPs) synthesized using a picosecond laser operating in burst mode and subsequently processed with a nanosecond laser in deionized water (DW). The initial synthesis via pulsed laser ablation in liquid (PLAL) revealed distinct phases, like B2, γ-brass, Fe5Si3, and body-centered cubic (BCC), as confirmed by high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) data. Elemental mapping indicated enrichment of B2-type phases (Al–Fe and Al–Ni) in the larger NPs, while smaller NPs exhibited γ-brass and Fe5Si3-type phases. Following nanosecond laser processing, the NPs displayed significant morphological transformations, including the emergence of hollow structures, as well as enhanced crystallinity. Post-processing analysis demonstrated the evolution of B2 and Fe5Si3-type phases, driven by a laser-induced annealing effect, which resembles the traditional furnace annealing. This dual-stage laser approach effectively combines the rapid synthesis of NPs with structural refinement, offering a versatile pathway for tailoring material properties. These findings underscore the potential of laser-based techniques in the controlled synthesis and structural modulation of HEA NPs, paving the way for applications in catalysis, energy conversion, and advanced functional materials.