Phase evolution and morphological transformation of high-entropy alloy FeMnNiAlSiC nanoparticles via sequential picosecond laser ablation and nanosecond laser annealing
Abstract
This study investigates the morphological evolution and enhanced crystallinity of FeMnNiAlSiC high-entropy alloy (HEA) nanoparticles (NPs) synthesized using a picosecond laser operating in burst mode and subsequently processed with a nanosecond laser in deionized water (DW). The initial synthesis via pulsed laser ablation in liquid (PLAL) revealed distinct phases, like B2, γ-brass, Fe5Si3, and body-centered cubic (BCC), as confirmed by high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) data. Elemental mapping indicated enrichment of B2-type phases (Al–Fe and Al–Ni) in the larger NPs, while smaller NPs exhibited γ-brass and Fe5Si3-type phases. Following nanosecond laser processing, the NPs displayed significant morphological transformations, including the emergence of hollow structures, as well as enhanced crystallinity. Post-processing analysis demonstrated the evolution of B2 and Fe5Si3-type phases, driven by a laser-induced annealing effect, which resembles the traditional furnace annealing. This dual-stage laser approach effectively combines the rapid synthesis of NPs with structural refinement, offering a versatile pathway for tailoring material properties. These findings underscore the potential of laser-based techniques in the controlled synthesis and structural modulation of HEA NPs, paving the way for applications in catalysis, energy conversion, and advanced functional materials.

Please wait while we load your content...