Zinc-integrated PLGA/chitosan nanofiber mesh: a platform for wound healing applications
Abstract
Non-healing wounds present significant challenges to patients and healthcare systems, often causing infections and chronic pain due to impaired self-regeneration. Zinc (Zn) shows promise in biomedical applications, particularly wound healing, as its degradation releases Zn2+ ions that enhance cell proliferation, angiogenesis, and antimicrobial activity. These properties make Zn ideal for bioresorbable wound dressings, scaffolds, and tissue repair coatings. This study aimed to incorporate metallic Zn particles into electrospun nanofiber meshes of poly(D,L-lactic-co-glycolic acid) (PLGA) and PLGA/chitosan (PLGA–CH) and evaluate their wound healing potential. We electrospun polymer–Zn nanoparticle mixtures to fabricate composite fibrous meshes. We assessed Zn's impact on scaffolds' physical, chemical, and biological properties, including fiber morphology, chemical composition, mechanical strength, and Zn2+ release. Results showed Zn influences PLGA's physical properties without altering chemical composition. Zn-containing meshes released Zn2+ ions in a dose-dependent manner. Biological evaluations using 3T3 fibroblasts over three days revealed fiber composition-dependent cytotoxicity, with certain compositions supporting cell proliferation, suggesting potential for tissue remodelling. Given PLGA and chitosan's biocompatibility and biodegradability, incorporating Zn into composite nanofiber meshes presents a promising approach for wound healing and tissue engineering applications.