Optimizing waste valorization: catalytic co-pyrolysis of cabbage waste and tire waste for enhanced bio-oil and syngas production utilizing char as a reforming catalyst†
Abstract
This study explores the catalytic co-pyrolysis of cabbage waste (CW) and tire waste (TW) to enhance the yield and quality of bio-oil and syngas. Although CW is produced in large quantities from global cabbage cultivation, its lower hydrogen content limits its utility for fuel and chemical production. The co-pyrolysis process, utilizing char as a catalyst, presents a cost-effective approach to optimize product outputs by promoting the reforming of volatiles during thermal decomposition. Thermogravimetric-infrared spectrometry (TG-FTIR) and a dual-stage fixed bed reactor were employed to assess thermal behavior, the release of evolved gases and product composition. Results demonstrated that catalyst-assisted co-pyrolysis with char reduced non-condensable emissions to 33.45% and increased condensable products to 66.57%, compared to 39.57% and 60.46% for co-pyrolysis alone, and 49.23% and 50.77% for CW pyrolysis. Furthermore, char-mediated volatile reforming significantly decreased the oxygenated fraction to 6.7% from 13.6% in co-pyrolysis and 22.5% in CW pyrolysis and greatly increased phenolic compounds and aromatics to 28.3% and 31.7% from 22.3% and 27.8% for co-pyrolysis, 17.9% and 21.7% for biomass pyrolysis, respectively. This research highlights the potential of integrating biomass and waste materials to promote sustainable energy solutions through enhanced resource utilization and diminished environmental impact.

Please wait while we load your content...