Issue 28, 2025, Issue in Progress

N-Acetylcysteine and pro-adrenomedullin dual-crosslinked gelatin–chitosan hydrogels with enhanced mechanical and mineralization performance

Abstract

Bone regeneration requires coordination between bone formation, vascularization, and inflammatory regulation. However, current biomaterials often fail to provide mechanical stability and sustained bioactivity while supporting cell viability. This study presents the development and characterization of hydrogels composed of methacrylated gelatin (GelMA) and chitosan methacrylate (ChMA), crosslinked by photopolymerization (GC hydrogels). These were evaluated for their mineralization potential in vitro and ex vivo when loaded with N-acetylcysteine (NAC), a bioactive antioxidant (GCN); a pro-angiogenic peptide derived from adrenomedullin (PAMP, GCP); or both compounds (GCNP). FT-IR spectroscopy confirmed successful polymer methacrylation and the interaction of NAC with the polymer network. Scanning electron microscopy revealed that NAC increased the pore size from 24.49 ± 14.19 μm (GC) to 200.49 ± 80.42 μm (GCN). NAC also enhanced mechanical performance, with GCN exhibiting the highest compressive strength (151.79 ± 44.81 kPa) and GCNP the highest stiffness (Young's modulus: 55.26 ± 5.79 kPa). NAC-containing hydrogels degraded faster than GC, enabling biphasic release over 14 days. In vitro and ex vivo assays using pre-osteoblastic cells and a calvarial defect model demonstrated that GCNP hydrogels significantly enhanced cell viability and mineralization, increasing calcium deposition by 2.5-fold compared to GC (p < 0.01). These findings suggest that NAC not only reinforces the mechanical strength of hydrogel scaffolds designed for temporary support in non-load-bearing bone defects, but also acts as a bioactive agent upon release. Its combination with the pro-adrenomedullin peptide (PAMP) results in synergistic effects on mineralization. GCNP hydrogels are therefore promising candidates for drug delivery and bone tissue regeneration.

Graphical abstract: N-Acetylcysteine and pro-adrenomedullin dual-crosslinked gelatin–chitosan hydrogels with enhanced mechanical and mineralization performance

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2025
Accepted
17 Jun 2025
First published
01 Jul 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 22524-22533

N-Acetylcysteine and pro-adrenomedullin dual-crosslinked gelatin–chitosan hydrogels with enhanced mechanical and mineralization performance

T. Zertuche-Arias, M. Alatorre-Meda, I. A. Rivero, P. Juárez and A. B. Castro-Ceseña, RSC Adv., 2025, 15, 22524 DOI: 10.1039/D5RA03349G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements