Enhancing organic solar cell performance via Cu nanorods-doped PEDOT:PSS: a pathway to efficient charge transport and plasmonic enhancement
Abstract
Copper nanorods (CuNRs) were synthesized through hydrothermal reduction and used as dopants in the buffer transport layer of polymer solar cells. The CuNRs were incorporated into the hole transport layer of thin-film organic solar cells (TFPSCs) to facilitate charge transport processes. The investigation employs a conventional device architecture for fabricating the solar cells. The results show that the power conversion efficiency (PCE) increased from 3.93% (pristine device) to 5.60% (device with 2% CuNRs), representing an improvement of over 42% compared to the pristine device. The enhanced performance is primarily attributed to the improved localized surface plasmon resonance induced by the CuNRs into the PEDOT:PSS, which enhances charge transport at the interface and reduces charge carrier recombination. In the optimized device with CuNRs doped in the PEDOT:PSS hole transport layer, the highest recorded PCE was 5.60%, demonstrating this approach's effectiveness of the CuNRs in the HTL. The effective use of CuNRs to enhance charge transport and plasmonic effects in thin-film organic solar cells.