Issue 34, 2025, Issue in Progress

Unlocking porosity: structural tuning of urea-based MOFs via reaction parameter control

Abstract

In the synthesis of metal–organic frameworks (MOFs), efforts to increase the pore sizes by elongating linkers often result in interpenetration, a challenge that is exacerbated when functional groups are added. Urea groups and their derivatives play an important role in supramolecular chemistry by providing directional hydrogen bonding donor sites and are often considered “privileged groups”. Incorporating these moieties into MOFs allows for their spatial separation, a critical approach to enhancing their functional activity, simultaneously preventing interpenetration, and enlarging the pore size. In this study, we synthesized hydrophilic urea-functionalized MOFs using zinc ions and the ligands 4,4′-(carbonylbis(azanediyl))dibenzoic acid (L1) and 1,3-di(pyridin-4-yl)urea (L2). Different levels of interpenetration and pore size were produced by varying temperature and starting material concentrations. UA-1 and UA-2 displayed 4-fold interpenetration. Notably, UA-3 formed non-interpenetrated 1D hexagonal mesoporous channels with six urea groups around each hexagonal pore, making it the first example of a non-interpenetrated mesoporous urea MOF. This topology differs from existing RCSR representations. We also investigated the host–guest interactions when introducing various organic molecules into UA-3, using a combination of single crystal X-ray diffraction (SCXRD), thermogravimetric analysis (TGA) and solid-state nuclear magnetic resonance (ss-NMR) spectroscopy. SCXRD provided insight into the amount and position of solvent molecules within the channels of the framework.

Graphical abstract: Unlocking porosity: structural tuning of urea-based MOFs via reaction parameter control

Supplementary files

Article information

Article type
Paper
Submitted
15 Apr 2025
Accepted
22 Jul 2025
First published
01 Aug 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 27531-27543

Unlocking porosity: structural tuning of urea-based MOFs via reaction parameter control

L. Esrafili, O. Cheung, P. Adriaensens, E. Derveaux, L. T. Glasby, P. Z. Moghadam and C. M. L. Vande Velde, RSC Adv., 2025, 15, 27531 DOI: 10.1039/D5RA02649K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements