Issue 28, 2025, Issue in Progress

Detection of lamivudine using liquid-surface-enhanced Raman spectroscopy

Abstract

Antiretroviral medications such as lamivudine (LAM) are central to the treatment of HIV/AIDS. Because of the rise in the substandard production of these pharmaceuticals, new methods of quality control are required. In this study, the use of silver nanoparticles (AgNPs) for the detection and quantification of LAM at low concentrations was explored using a new method known as liquid-surface enhanced Raman spectroscopy (liquid-SERS). AgNPs (20–80% v/v) were prepared by chemical reduction and subsequently characterized by assessing their size, shape, absorbance, and molecular properties. A series of LAM samples (0–80 μg ml−1) were then spiked with AgNPs and evaluated using liquid-SERS. Subsequently, a partial least-square analysis was conducted to determine the linearity (R2), sensitivity, limit of detection (LOD) and quantification (LOQ) of selected peak ratios. The results show an improved sensitivity for the 783 cm−1 band of the drug when coupled with the 945 cm−1 band of the citrate stabilizer, which is likely facilitated by intermolecular forces such hydrogen bonding dipole–dipole forces between the functional groups. Secondly, the R2 ranged between 0.96–0.98, while the LOD and LOQ reached 1.12 to 10.49 and 3.39 to 31.77 μg ml−1 respectively. These values were found to be comparative to results reported using common techniques such as UV-vis spectroscopy and high-performance liquid chromatography. As such, it was concluded that further investigation into drug/AgNPs and liquid-SERS could provide new methods of quality control for pharmaceutical products at low concentrations, through a rapid, complementary and cost-effective photonics approach.

Graphical abstract: Detection of lamivudine using liquid-surface-enhanced Raman spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
14 Apr 2025
Accepted
24 Jun 2025
First published
03 Jul 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 22789-22798

Detection of lamivudine using liquid-surface-enhanced Raman spectroscopy

L. Thobakgale, L. N. Thwala and P. Mthunzi-Kufa, RSC Adv., 2025, 15, 22789 DOI: 10.1039/D5RA02614H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements