Reductive faceted photocatalytic nanocoating for uranium extraction from seawater†
Abstract
Photocatalytic technology, as an emerging method for uranium extraction from seawater, has garnered significant attention due to its potential for high efficiency, low cost, and environmental sustainability. However, most existing photocatalytic materials are in powder form, which not only limits their effective recovery in natural seawater environments but also indicates that their reductive performance still has considerable room for improvement. To address these challenges, this study proposes a strategy to construct photocatalytic coatings on organic plastic films, enabling material recyclability. Additionally, through crystal facet engineering, the specific facets of the photocatalyst were exposed, forming electron-rich surfaces that enhance the tendency of atomic nuclei to lose electrons. This modification significantly strengthened the generation of reductive species, thereby improving the efficiency of photocatalytic reduction to tetravalent uranium species at the interface. Consequently, the uranium extraction performance from seawater was enhanced. Compared to existing P25-based recyclable materials, this method achieved approximately 1.64 times higher uranium extraction efficiency and maintained over 85% extraction efficiency after seven cycles of reuse. This study provides a simple and efficient new approach for uranium extraction from seawater, demonstrating considerable potential for practical applications.