Issue 29, 2025, Issue in Progress

Selective production of a jet fuel fraction through hydrocracking of n-heptadecane using Pt-supported β-zeolite-Al2O3 composite catalysts

Abstract

Hydrocarbon fuels can be produced from a wide range of carbonaceous materials, including biomass and waste plastics, through the Fischer–Tropsch (FT) process. As sustainable aviation fuel (SAF) becomes increasingly important, selective production of a jet fuel fraction from FT wax is required; however, this has not yet been achieved. In this study, hydrocracking of n-heptadecane (n-C17) as a model diesel fuel fraction of FT wax was estimated to obtain a jet fuel fraction selectively using Hβ-zeolite-Al2O3 composite-supported Pt catalysts. The Hβ-zeolite (25 wt%, SiO2/Al2O3 = 100)-Al2O3 (60 wt%)-binder (alumina-sol, 15 wt% as Al2O3) composite-supported Pt (0.5 wt%) catalyst (0.5Pt/β(100)60A) was tested for hydrocracking of n-heptadecane using a fixed-bed flow reactor under the following conditions: 0.5 MPa H2 pressure, H2 300 mL min−1, WHSV 2.3 h−1 and 2 g catalyst weight. After hydrocracking of n-C17 to form gaseous hydrocarbons at 300 °C without pre-reduction of 0.5Pt/β(100)60A, the reaction was performed at 250 °C. A conversion of 97% and a selectivity of 79% for the C8–C14 fraction of the jet fuel range were achieved. The sum of the selectivity for the C7 and C8 fractions was higher than 50%. To confirm reproducibility, when the hydrocracking of n-C17 using the catalyst pre-reduced at 270 °C was performed at 300–304 °C, a conversion of 93% and a selectivity of 55% for C8–C14 were achieved at 302 °C, with high selectivity for C8 and C9, although significant amounts of gaseous products were observed simultaneously. Finally, when the hydrocracking of n-C17 using a catalyst pre-reduced at 310 °C was performed at 300–308 °C, a conversion of 99% and a selectivity of 63% for C8–C14 were achieved at 308 °C, and the selectivity for gaseous products reduced to 16%. However, the high selectivity for C8 and C9 was lost, and the same amount of each fraction of C8–C12 was simultaneously observed. It was suggested that the high selectivity of the β-zeolite-containing catalyst for the C8 and C9 fractions could be attributed to C–H bond activation of the carbon at position 9 of n-C17 on reduced Pt within the micropores of β-zeolite.

Graphical abstract: Selective production of a jet fuel fraction through hydrocracking of n-heptadecane using Pt-supported β-zeolite-Al2O3 composite catalysts

Supplementary files

Article information

Article type
Paper
Submitted
04 Apr 2025
Accepted
20 Jun 2025
First published
04 Jul 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 23165-23173

Selective production of a jet fuel fraction through hydrocracking of n-heptadecane using Pt-supported β-zeolite-Al2O3 composite catalysts

K. Murata, Y. Nishiura, S. Mitsuoka, M. Horibe, T. Hashimoto, N. Chen, Y. Jonoo, S. Kawabe, K. Nakao and A. Ishihara, RSC Adv., 2025, 15, 23165 DOI: 10.1039/D5RA02332G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements