Issue 28, 2025

Organic fibrous nanostructures via the droplet-assisted growth and shaping (DAGS) mechanism

Abstract

The Droplet-Assisted Growth and Shaping mechanism (DAGS) represents a bottom-up approach for the fabrication of versatile one-dimensional polymeric (1D) nanomaterials and involves the polymerisation of a highly reactive monomer with water nanodroplets formed on a substrate surface. The unidimensional growth of the resulting polymer is sustained with its water insolubility. To date, all 1D polymeric nanostructures grown via the DAGS mechanism were either based on silicone, alumina, or germanium oxide but not on a carbonic backbone. In this paper, we demonstrate for the first time that the DAGS mechanism can also be used for the growth of organic 1D polymeric nanostructures using ethyl-2-cyanoacrylate (ECA) as a monomer. The polymerisation is carried out in n-hexane/toluene mixtures with different water contents (WCs). The obtained poly(ethyl-2-cyanoacrylate) (PECA) fibrous nanostructures (PECA-FNS), which were coated on glass, manifested as nanofibers and nanoribbons with an aspect ratio ranging from 4.9 to 18.3. Attenuated total reflectance infrared (ATR-IR) spectroscopy revealed the presence of the carbonyl bond on the coated glass substrates, confirming the presence of the PECA-FNS. The topography and the root mean square roughness (Sq) of the PECA-FNS were examined via atomic force microscopy (AFM). Both static contact angle measurements and UV-Vis spectrophotometry showed that the PECA-FNS coatings displayed a high transparency and moderate hydrophobicity.

Graphical abstract: Organic fibrous nanostructures via the droplet-assisted growth and shaping (DAGS) mechanism

Article information

Article type
Paper
Submitted
17 Mar 2025
Accepted
14 Jun 2025
First published
04 Jul 2025
This article is Open Access
Creative Commons BY license

RSC Adv., 2025,15, 23045-23053

Organic fibrous nanostructures via the droplet-assisted growth and shaping (DAGS) mechanism

R. Azizi and S. Seeger, RSC Adv., 2025, 15, 23045 DOI: 10.1039/D5RA01919B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements