Issue 19, 2025, Issue in Progress

Recent advances in zirconium-based catalysis and its applications in organic synthesis: a review

Abstract

In recent years, transition metal-catalysed organic synthesis has received great importance. Zirconium, a second-row transition metal, has gained prominence owing to its luster and abundance, but it is more expensive than other transition metals because it is difficult to refine and process. In particular, active zirconia-based catalysts have fascinated researchers owing to their low toxicity, affordability, flexibility and excellent dispersion. This review focuses on the latest zirconium catalysts used in the manufacturing of medicinal compounds, bioactive molecules and pertinent synthesis mechanisms reported since 2020. In this review, the synthesis of various heterocycles such as imidazoles, pyrazole, pyrimidinones, quinolines, quinazolinones, pyridines, pyrroles, benzopyrans, substituted amides and triazolidine-based bioactive molecules is discussed in detail. Future research in this area is based on further understanding the scope of zirconium catalysed sustainable and approachable synthesis of biologically active compounds.

Graphical abstract: Recent advances in zirconium-based catalysis and its applications in organic synthesis: a review

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Review Article
Submitted
13 Mar 2025
Accepted
17 Apr 2025
First published
09 May 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 15417-15442

Recent advances in zirconium-based catalysis and its applications in organic synthesis: a review

S. Bibi, M. Zubair, R. Riaz, A. Kanwal and S. A. Ali Shah, RSC Adv., 2025, 15, 15417 DOI: 10.1039/D5RA01808K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements