Issue 20, 2025

Multicomponent catalyst-free regioselective synthesis and binding studies of 3-aroyl-2-methylimidazo[1,2-a]pyrimidines with BSA using biophysical and computational techniques

Abstract

A facile and environmentally benign protocol for regioselective synthesis of diversely substituted imidazo[1,2-a]pyrimidines 5a–h has been described via multicomponent reaction of unsymmetrical β-diketones 1, N-bromosuccinimide 2 and 2-aminopyrimidine 4 in DCM. The reaction proceeds through in situ formation of α-bromo-β-diketones 3 and their ensuing condensation with 2-aminopyrimidine without the need of any organic or inorganic catalyst. The structure of the regioisomeric product was characterized by 1H, 13C NMR, heteronuclear 2D NMR and HRMS studies. The present protocol offers several advantages such as avoidance of metal-based and toxic catalysts, broad substrate scope with respect to substitutions on β-diketones, operational simplicity, easy work-up and high yields. Computational molecular docking studies were carried out to examine the interaction of imidazo[1,2-a]pyrimidines with bovine serum albumin (BSA). Moreover, different spectroscopic approaches viz. UV-visible, steady-state fluorescence and competitive displacement assays were carried out to investigate the binding mechanisms of imidazo[1,2-a]pyrimidines (5c, 5e and 5h) with BSA. The results thus obtained revealed that imidazo[1,2-a]pyrimidines showed moderate binding with BSA through a static quenching mechanism and compound 5e had more affinity to bind in site I of BSA.

Graphical abstract: Multicomponent catalyst-free regioselective synthesis and binding studies of 3-aroyl-2-methylimidazo[1,2-a]pyrimidines with BSA using biophysical and computational techniques

Supplementary files

Article information

Article type
Paper
Submitted
12 Mar 2025
Accepted
30 Apr 2025
First published
14 May 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 15999-16014

Multicomponent catalyst-free regioselective synthesis and binding studies of 3-aroyl-2-methylimidazo[1,2-a]pyrimidines with BSA using biophysical and computational techniques

R. Aggarwal, M. Sharma, G. Sumran and P. Kumar, RSC Adv., 2025, 15, 15999 DOI: 10.1039/D5RA01795E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements