Green synthesis of ZnO nanoparticles using E. cardamomum and zinc nitrate precursor: a dual-functional material for water purification and antibacterial applications
Abstract
This study presents an eco-friendly, bio-engineered approach for synthesizing zinc oxide nanoparticles (ZnO NPs) using Elettaria cardamomum pod (EC-pod) extract, offering a sustainable alternative for environmental remediation and antimicrobial applications. X-ray diffraction (XRD) analysis confirms the wurtzite crystalline phase, with an average particle size of 20.87 nm. Ultraviolet-visible (UV-Vis) spectroscopy reveals a characteristic absorption peak at 372 nm, corresponding to an energy band gap of 3.33 eV. Fourier-transform infrared (FTIR) spectroscopy highlights the role of phytochemicals as capping and stabilizing agents. Field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) confirm multi-architectural morphologies, including hexagonal, spherical, rod-like, and pentagonal structures, with energy-dispersive X-ray (EDX) spectroscopy verifying elemental purity. The photocatalytic efficiency of EC-pod:ZnO in degrading malachite green (MG) dye under UV irradiation reaches 99.8% removal within 160 minutes, with a high quantum yield of 2.73 × 10−3 molecules per photon and a space-time yield of 1.37 × 10−5 molecules per photon per mg. Additionally, EC-pod:ZnO exhibits significant antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria, showcasing its dual functionality as a potential photocatalyst and antimicrobial agent. This nature-inspired ZnO nanomaterial offers an economical, scalable, and sustainable solution for environmental and biomedical applications, highlighting its potential in wastewater treatment and microbial control.

Please wait while we load your content...