Issue 28, 2025, Issue in Progress

Competition among weak C–H⋯O/S/H interactions in the crystal structure of {(C2H5O)2P(S)}2N2C4H8 bis(thiophosphoramide): experimental/computational studies

Abstract

Supramolecular assembly driven by weak C–H⋯S[double bond, length as m-dash]P/O and CH⋯HC contacts was studied in a new bis(thiophosphoramide) structure, {(C2H5O)2P(S)}2N2C4H8, using X-ray crystallography and DFT computational methods. Combined QTAIM/noncovalent interaction (NCI) and natural bond orbital (NBO) analyses were used to gain deeper insights into the nature, energy and strengths of these contacts. The C–H⋯O hydrogen bond was found to be the strongest interaction, followed by two H⋯H and then H⋯S contacts. Crystal lattice energy calculations were performed, and the components contributing to the intermolecular interactions were investigated and discussed (electrostatic, polarization, dispersion and repulsion). The dispersion forces were found to be the most prominent in the network energy. The relative contributions of the intermolecular contacts were visualized by Hirshfeld surfaces and two-dimensional fingerprint diagrams. Some topics related to geometry and conformation were also studied.

Graphical abstract: Competition among weak C–H⋯O/S/H interactions in the crystal structure of {(C2H5O)2P(S)}2N2C4H8 bis(thiophosphoramide): experimental/computational studies

Supplementary files

Article information

Article type
Paper
Submitted
23 Feb 2025
Accepted
04 Jun 2025
First published
02 Jul 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 22671-22681

Competition among weak C–H⋯O/S/H interactions in the crystal structure of {(C2H5O)2P(S)}2N2C4H8 bis(thiophosphoramide): experimental/computational studies

M. Khorramaki, M. Pourayoubi, V. Darugar, M. Vakili, M. Nečas, M. Akbari and M. Maaza, RSC Adv., 2025, 15, 22671 DOI: 10.1039/D5RA01306B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements