Issue 17, 2025

Adsorption/photodegradation of methylene blue using a sulfur-1,3-diisopropenylbenzene copolymer

Abstract

This study aims to utilize sulfur-1,3-diisopropenylbenzene (S-DIB) to develop a more cost-effective treatment method for dye-contaminated wastewater. The behavior and mechanisms of adsorption and photodegradation on the removal of methylene blue (MB) by S-DIB in water were studied systematically, including three isotherm model fitting tests, kinetics and thermodynamic analysis. With the optimization of the adsorption experimental conditions, the results revealed that S-DIB achieved a 96.53% removal percentage of MB at pH 11, initial dye concentration of 8 mg L−1, adsorbent dose of 20 mg, temperature of 293 K and contact time of 180 min. The adsorption data fitted well with the Langmuir isotherm and pseudo-second order models, with regression coefficients (R2) of 0.9990 and 0.9993, respectively. Thermodynamic studies showed that the adsorption of MB by S-DIB was exothermic and spontaneous. Furthermore, S-DIB exhibited a unique photodegradation property in visible light regions with the removal of MB from water, offering a dual mechanism of adsorption and photodegradation, with a degradation efficiency is 94%. This work enhances the possibilities and potential for the application of sulfur-rich copolymers in wastewater treatments.

Graphical abstract: Adsorption/photodegradation of methylene blue using a sulfur-1,3-diisopropenylbenzene copolymer

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
22 Feb 2025
Accepted
12 Apr 2025
First published
25 Apr 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 13225-13234

Adsorption/photodegradation of methylene blue using a sulfur-1,3-diisopropenylbenzene copolymer

M. Wu, Y. Liu, L. Wu, T. Hasell and F. Luan, RSC Adv., 2025, 15, 13225 DOI: 10.1039/D5RA01297J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements