Issue 33, 2025, Issue in Progress

Preparation and characterization of kaolin–[TMS]–NH2+C(NO2)3 as a novel heterogeneous nano-catalyst and its use in the synthesis of imidazo[1,2-a]pyrimidine and 1,2,4-triazolo[4,3-a]pyrimidines

Abstract

This article presents a highly efficient and eco-friendly method for synthesizing imidazo[1,2-a]pyrimidines and 1,2,4-triazolo[4,3-a]pyrimidines using a novel nano-catalyst, kaolin–[TMS]–NH2+C(NO2)3, under solvent-free conditions. The catalyst was thoroughly characterized by FT-IR, XRD, TGA, EDX, FESEM, TEM and BET, by combining these techniques, the catalyst's structural integrity, composition, morphology, porosity, and thermal stability were thoroughly validated, making it suitable for high-temperature catalytic applications. The method offers exceptional efficiency, achieving product yields of 92–98% within remarkably short reaction times, significantly outperforming conventional approaches. Notably, the catalyst exhibited excellent recyclability, maintaining its activity over four consecutive cycles without loss of efficiency. Key advantages include simplified product isolation, elimination of hazardous solvents, and a straightforward catalyst synthesis protocol, making this approach both economically and environmentally viable for large-scale applications.

Graphical abstract: Preparation and characterization of kaolin–[TMS]–NH2+C(NO2)3− as a novel heterogeneous nano-catalyst and its use in the synthesis of imidazo[1,2-a]pyrimidine and 1,2,4-triazolo[4,3-a]pyrimidines

Supplementary files

Article information

Article type
Paper
Submitted
22 Feb 2025
Accepted
01 Jul 2025
First published
29 Jul 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 26992-27015

Preparation and characterization of kaolin–[TMS]–NH2+C(NO2)3 as a novel heterogeneous nano-catalyst and its use in the synthesis of imidazo[1,2-a]pyrimidine and 1,2,4-triazolo[4,3-a]pyrimidines

M. Dorostkar, L. Nazemi-Nasyrmahale and F. Shirini, RSC Adv., 2025, 15, 26992 DOI: 10.1039/D5RA01292A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements