Issue 17, 2025, Issue in Progress

Synthesis, molecular docking, and biological investigations of new pyrazolone chalcones

Abstract

Heterocyclic compounds are essential to the drug development and discovery processes. Herein, we synthesized new pyrazolone chalcones (3a–g) through the reaction of azopyrazolone (2) with different aromatic aldehydes in a basic medium. Numerous techniques including elemental analysis, 1H-NMR, 13C-NMR, and FT-IR spectroscopies, were used to characterize pyrazolone chalcone derivatives. Compound 3b exhibited the highest binding energy towards YAP/TEAD protein with a value of −8.45 kcal mol−1 in in silico studies. This observation suggested that compound 3b inhibits the YAP/TEAD Hippo signaling pathway. In addition, compound 3b offered a prospective anticancer effect against various cancer cell lines, such as HepG-2, MCF-7, and HCT-116, among the other synthesized compounds, with IC50 values equal to 5.03 ± 0.4, 3.92 ± 0.2, and 6.34 ± 0.5 μM, respectively. These results validated our findings regarding the in silico suppression of the YAP/TEAD protein. Its pharmacokinetic properties were theoretically observed using ADMET. Additionally, compound 3b demonstrated a potent antioxidant scavenging action (in vitro) against DPPH free radicals. Thus, based on our findings, compound 3b may act as a potential anticancer scaffold owing to its inhibitory impact towards the YAP/TEAD-mediated Hippo signaling pathway with a safe toxic profile on normal cells.

Graphical abstract: Synthesis, molecular docking, and biological investigations of new pyrazolone chalcones

Supplementary files

Article information

Article type
Paper
Submitted
20 Feb 2025
Accepted
10 Apr 2025
First published
25 Apr 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 13214-13224

Synthesis, molecular docking, and biological investigations of new pyrazolone chalcones

A. A. Noser, M. M. Salem, E. M. ElSafty, M. H. Baren, A. I. Selim and H. S. A. Mandour, RSC Adv., 2025, 15, 13214 DOI: 10.1039/D5RA01233C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements