Issue 17, 2025, Issue in Progress

Applicability of NMR spectroscopy to quantify microplastics across varying concentrations in polymer mixtures

Abstract

Quantitative nuclear magnetic resonance (qNMR) spectroscopy could potentially be used for environmental microplastic analyses, provided the challenges posed by mixed polymer samples with varying concentrations and overlapping signals are understood. This study investigates the feasibility of qNMR as a reliable and cost-efficient method for quantifying synthetic polymers in mixtures of low and varying concentrations, addressing key challenges and limitations. Polymer mixtures were analysed using deuterated chloroform (CDCl3) and deuterated tetrahydrofuran (THF-d8) as solvents, with polystyrene (PS), polybutadiene-cis (PB), polyisoprene-cis (PI), polyvinyl chloride (PVC), polyurethane (PU), and polylactic acid (PLA) as selected polymers. Mixtures contained either low and high concentrations of each polymer or equal concentrations of all six polymers. Polymer concentrations were measured using the internal standard method. The method showed low relative errors for low concentrations of PS in CDCl3 and PVC in THF-d8, with values of −5% and 0%, respectively, while PB and PI in CDCl3 show relative errors of +5% and −3%, respectively. We observe significant linearity between nominal and measured concentrations with R2 values ranging from 0.9655 to 0.9981, except for PU, which had high relative errors and poor linearity (R2 = 0.9548). Moreover, simultaneous quantification of six polymers in THF-d8 proves effective at intermediate concentrations. However, overlapping proton signals are observed, causing high-concentration polymers to mask low-concentration ones. While this study demonstrates low limit of quantification (LOQ) and advances in simultaneous polymer quantification, further research is needed to improve qNMR accuracy for mixed polymer samples and environmentally relevant concentrations.

Graphical abstract: Applicability of NMR spectroscopy to quantify microplastics across varying concentrations in polymer mixtures

Supplementary files

Article information

Article type
Paper
Submitted
17 Feb 2025
Accepted
16 Apr 2025
First published
23 Apr 2025
This article is Open Access
Creative Commons BY license

RSC Adv., 2025,15, 13041-13052

Applicability of NMR spectroscopy to quantify microplastics across varying concentrations in polymer mixtures

J. Schmidt, M. Haave and W. Wang, RSC Adv., 2025, 15, 13041 DOI: 10.1039/D5RA01174D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements