Issue 17, 2025

Layered double hydroxide based composite core–shell electrospun nanofibers for lead and fluoride filtration from contaminated streams

Abstract

Coaxial electrospinning was used to synthesize polyacrylonitrile–polyethersulfone (PAN–PES) core–shell nanofibers with magnesium–aluminum layered double hydroxide (Mg–Al LDH) for filtration of lead and fluoride from contaminated streams. Fiber geometry was characterized at a 0.5 mL h−1 flow rate for the core polymer (PES/LDH) and 0.8 mL h−1 flow rate for the shell polymer (PAN), with a potential of 23 kV and a distance of 15–17 cm between the collector and the needle head. A homogeneous fiber shape was achieved using an optimal LDH concentration of 0.7%. The prepared nanofibers served as an ultrafiltration membrane with a permeability of 5 × 10−12 m s−1 Pa−1. The uptake capacity of the produced nanofibers for fluoride and lead was estimated to be 948 mg g−1 and 196 mg g−1, respectively at 298 K as per Langmuir's isotherm model. These fibers exhibited hydrophilic properties and possessed a significant level of porosity. XPS study revealed binding energies of 139.3 eV and 685.2 eV, indicating lead and fluoride uptake by the nanofibers. Ether, sulfone, hydroxyl and nitrile groups found in the nanofibers' shell and core most likely contributed to the lead and fluoride uptake. This facilitated the uptake of both ions on the surface of the nanofibers. In terms of the inhibition effect, fluoride had a stronger masking effect compared with lead in a multicomponent solution (consisting of lead and fluoride). Dynamic vacuum filtration was also investigated using the prepared nanofibers in artificial and real-life feed solutions.

Graphical abstract: Layered double hydroxide based composite core–shell electrospun nanofibers for lead and fluoride filtration from contaminated streams

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
16 Feb 2025
Accepted
07 Apr 2025
First published
25 Apr 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 13337-13352

Layered double hydroxide based composite core–shell electrospun nanofibers for lead and fluoride filtration from contaminated streams

M. Sharma, R. Murali, K. K., K. P. and S. Chatterjee, RSC Adv., 2025, 15, 13337 DOI: 10.1039/D5RA01144B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements