Issue 14, 2025, Issue in Progress

Advanced synthesis and multifaceted characterization of a 4,4-diaminodiphenylmethane-melamine-formaldehyde terpolymer: anti-corrosion performance and antimicrobial potential in 1 M hydrochloric acid

Abstract

Herein, a 4,4-diaminodiphenylmethane-melamine-formaldehyde (DMF) terpolymer was synthesized and characterized to investigate its anti-corrosion properties for mild steel in a 1 M hydrochloric acid electrolyte. The DMF terpolymer produced through condensation polymerization was characterized using FTIR, 1H NMR, 13C NMR, and gel permeation chromatography. Electrochemical tests showed that it achieved 94% inhibition efficiency at 100 ppm, functioning as a mixed-kind inhibitory agent. The adsorption phenomenon conformed to the paradigms delineated by the Langmuir adsorption isotherm, indicating strong binding through physical and chemical interactions. AFM confirmed the creation of a protective barrier on the steel substrate, while DFT studies supported its molecular adhesion. Additionally, the terpolymer exhibited antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis.

Graphical abstract: Advanced synthesis and multifaceted characterization of a 4,4-diaminodiphenylmethane-melamine-formaldehyde terpolymer: anti-corrosion performance and antimicrobial potential in 1 M hydrochloric acid

Article information

Article type
Paper
Submitted
14 Feb 2025
Accepted
17 Mar 2025
First published
08 Apr 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 11098-11114

Advanced synthesis and multifaceted characterization of a 4,4-diaminodiphenylmethane-melamine-formaldehyde terpolymer: anti-corrosion performance and antimicrobial potential in 1 M hydrochloric acid

R. Sehrawat, P. Vashishth, N. Raghav, A. Bendi, A. J. Ahamed, N. Mujafarkani and B. Mangla, RSC Adv., 2025, 15, 11098 DOI: 10.1039/D5RA01095K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements