Organic–inorganic hexahalometalate-crystal semiconductor K2(Sn, Se, Te)Br6 hybrid double perovskites for solar energy applications
Abstract
Hybrid organic, halide, and divalent metal double perovskites K2(Sn, Se, Te)Br6 with cubic structures were computationally evaluated using the generalized-gradient approximation (GGA) and modified Becke–Johnson (mBJ-GGA) functionals. The Goldschmidt tolerance factor, octahedral factor, Helmholtz free energy, and formation energy illustrated the structural, chemical, and thermodynamic stabilities of the studied compounds. The equilibrium lattice constants for K2SeBr6 and K2SnBr6 deviated from the experimental values by 4.3% and 3.1%, respectively. The elastic constants of K2(Sn, Se, Te)Br6 were significantly smaller due to their larger reticular distances, lower Coulomb forces, and reduced hardness. The high dynamic lattice anharmonicity of K2(Sn, Se, Te)Br6 reduced their electronic conductivity, providing a practical advantage in the presence of a thermoelectric field. K2(Se, Te)Br6 were predicted to have indirect bandgaps of X–L nature, while K2SnBr6 exhibited a direct Γ–Γ bandgap. The power conversion efficiency (PCE) for photovoltaic devices with K2(Sn, Se, Te)Br6 perovskite compounds as solar absorbers reached 20.51%. Their absorption in the visible region provided an advantage in energy harvesting. The electronic transitions in the studied double perovskites took place between the Br-4p and K-4s orbitals. Thus, these hybrid organic–inorganic halide perovskites proved to be excellent semiconductors for photovoltaic applications and demonstrated optimized photovoltaic efficiency.