Issue 15, 2025, Issue in Progress

Organic–inorganic hexahalometalate-crystal semiconductor K2(Sn, Se, Te)Br6 hybrid double perovskites for solar energy applications

Abstract

Hybrid organic, halide, and divalent metal double perovskites K2(Sn, Se, Te)Br6 with cubic structures were computationally evaluated using the generalized-gradient approximation (GGA) and modified Becke–Johnson (mBJ-GGA) functionals. The Goldschmidt tolerance factor, octahedral factor, Helmholtz free energy, and formation energy illustrated the structural, chemical, and thermodynamic stabilities of the studied compounds. The equilibrium lattice constants for K2SeBr6 and K2SnBr6 deviated from the experimental values by 4.3% and 3.1%, respectively. The elastic constants of K2(Sn, Se, Te)Br6 were significantly smaller due to their larger reticular distances, lower Coulomb forces, and reduced hardness. The high dynamic lattice anharmonicity of K2(Sn, Se, Te)Br6 reduced their electronic conductivity, providing a practical advantage in the presence of a thermoelectric field. K2(Se, Te)Br6 were predicted to have indirect bandgaps of X–L nature, while K2SnBr6 exhibited a direct ΓΓ bandgap. The power conversion efficiency (PCE) for photovoltaic devices with K2(Sn, Se, Te)Br6 perovskite compounds as solar absorbers reached 20.51%. Their absorption in the visible region provided an advantage in energy harvesting. The electronic transitions in the studied double perovskites took place between the Br-4p and K-4s orbitals. Thus, these hybrid organic–inorganic halide perovskites proved to be excellent semiconductors for photovoltaic applications and demonstrated optimized photovoltaic efficiency.

Graphical abstract: Organic–inorganic hexahalometalate-crystal semiconductor K2(Sn, Se, Te)Br6 hybrid double perovskites for solar energy applications

Associated articles

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
05 Feb 2025
Accepted
22 Mar 2025
First published
17 Apr 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 11923-11933

Organic–inorganic hexahalometalate-crystal semiconductor K2(Sn, Se, Te)Br6 hybrid double perovskites for solar energy applications

K. Bouferrache, M. A. Ghebouli, B. Ghebouli, M. Fatmi and S. I. Ahmed, RSC Adv., 2025, 15, 11923 DOI: 10.1039/D5RA00862J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements