Biofuel production from waste residuals: comprehensive insights into biomass conversion technologies and engineered biochar applications
Abstract
Biomass-derived residuals represent a vital renewable energy source, offering sustainable alternatives to mitigate fossil fuel dependency, address climate change, and manage waste. Although biomass generally has a lower calorific value (10–20 MJ kg−1) compared to fossil fuels (40–50 MJ kg−1), its energy recovery potential can be enhanced through advanced conversion technologies such as torrefaction, pyrolysis, and gasification. Additionally, biomass is considered carbon neutral when sourced sustainably, as the CO2 released during combustion is reabsorbed by plants during their regrowth cycle, maintaining a balanced carbon flux in the atmosphere. This review explores the diverse sources of biomass and examines their chemical compositions and inherent properties, emphasizing their transformation into valuable energy carriers and bio-products. It provides a comprehensive analysis of thermochemical, biochemical, and physicochemical conversion technologies, detailing their mechanisms, efficiencies and applications. Special attention is given to biochar, a product of biomass pyrolysis, highlighting its potential in pollution mitigation, carbon sequestration, and as a catalyst in industrial applications. The review delves into synthesis processes of biochar and performance-enhancing modifications, illustrating its significant role in sustainable environmental management. Additionally, the economic and ecological advantages of biomass-derived energy, including reduced greenhouse gas emissions and waste reutilization, are critically evaluated, underscoring its superiority over conventional fossil fuels. Challenges limiting the scalability of biomass energy, such as technology costs, process efficiency, and market dynamics, are addressed, alongside prospective solutions. By consolidating extensive research on biomass conversion technologies and engineered biochar applications, this review serves as a valuable resource for researchers and policymakers. It aims to guide advancements in biomass utilization, fostering a transition toward sustainable energy systems and addressing global energy and environmental challenges.