Issue 11, 2025

Catalytic reduction of aldehydic and nitro groups of nitro-benzaldehyde derivatives by silver nanoparticle–containing smart alginate-poly(N-isopropylacrylamide-methacrylic acid) microgels

Abstract

Aromatic compounds containing aldehyde and nitro groups are very toxic to human health. Moreover, complete degradation of these compounds is not possible. Therefore, these compounds are converted into less toxic but more useful hydroxy-methyl aniline (HMA) derivatives. This conversion is performed using a suitable catalyst and a reducing agent. Therefore, alginate-poly(N-isopropylacrylamide-methacrylic acid) (AN-P(NIPAM-MAAc)) (AN-P(NM)) microgels were synthesized via a free radical precipitation polymerization (FRPP) method and were used as a micro-reactor for synthesis of silver (Ag) nanoparticles (NPs) into the polymeric network using in situ reduction methods. The synthesized AN-P(NM) microgels and Ag-AN-P(NM) hybrid microgels were characterized through SEM, FTIR, TEM, XRD, UV-vis spectroscopy, and EDX. Ag-AN-P(NM) exhibited temperature- and pH-responsive behavior as well as long-term stability of Ag nanoparticles in a polymeric network of AP(NM). Catalytic reduction of 4-nitrobenzaldehyde (4NBA) was evaluated under different conditions, such as different contents of Ag-AN-P(NM), 4NBA concentrations, temperatures, and concentrations of NaBH4. The Ag-AP(NM) hybrid microgels catalytically reduced 3-nitrobenzaldehyde (3NBA), 4NBA, and 3,5-dinitrobanzaldehyde (3,5DNBA) into their corresponding HA compounds in a water medium. The apparent rate constant (kob) values for 3NBA, 4NBA, and 3,5DNBA were found to be 1.73 min−1, 1.48 min−1, and 1.19 min−1, respectively. Ag-AP(NM) exhibited outstanding catalytic efficiency, recyclability, and stability as well as retained its performance across multiple cycles.

Graphical abstract: Catalytic reduction of aldehydic and nitro groups of nitro-benzaldehyde derivatives by silver nanoparticle–containing smart alginate-poly(N-isopropylacrylamide-methacrylic acid) microgels

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
30 Jan 2025
Accepted
07 Mar 2025
First published
19 Mar 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 8580-8593

Catalytic reduction of aldehydic and nitro groups of nitro-benzaldehyde derivatives by silver nanoparticle–containing smart alginate-poly(N-isopropylacrylamide-methacrylic acid) microgels

M. Arif, F. Tahir, T. Hussain, S. Alrokayan and T. Akhter, RSC Adv., 2025, 15, 8580 DOI: 10.1039/D5RA00713E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements