A facile one-pot γ-radiation formation of gum arabic-stabilized cobalt ferrite nanoparticles as an efficient magnetically retrievable heterogeneous catalyst
Abstract
Currently, there is a demand for an effective solution to address toxic pollutants in aqueous environments. Consequently, creating a cost-efficient and effective catalytic system with the added benefits of easy recovery from the medium and the ability to be reused is essential. In this study, gamma (γ) radiolysis as a simple and environmentally friendly process under ambient settings was used to successfully manufacture a nanocatalyst of cobalt ferrite nanoparticles (CoFe2O4 NPs) modified gum arabic (GA) as a nontoxic, biocompatible, and inexpensive biopolymer. The prepared GA-CoFe2O4 NPs were evaluated by using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX) mapping, and vibrating sample magnetometer analysis. XRD analysis illustrates the formation of CoFe2O4 NPs through the appearance of the characteristic peaks. TEM analysis shows the spherical shape of CoFe2O4 NPs with an average particle size diameter ranging from 20 to 30 nm. FTIR analysis of GA-CoFe2O4 NPs confirmed both the functionalization of GA with the CoFe2O4 NPs and the appearance of the specific signal of CoFe2O4 NPs. The atomic ratio obtained from EDX analysis matches the stoichiometric ratio of cobalt ferrite. The GA-CoFe2O4 NPs exhibit an excellent magnetic response of saturation magnetization of 47.619 emu g−1. The prepared CoFe2O4NPs were then evaluated as a catalyst for the catalytic reduction of p-NP, MO dye, and a mixture of these pollutants. The results showed that CoFe2O4 NPs have high catalytic efficiency in the reduction of mono or mixed compounds. Furthermore, recycling of the CoFe2O4 NPs catalyst was also confirmed and it could be magnetically recovered and reused for at least six times with a good catalytic efficiency.