Issue 33, 2025

Graphene oxide – polymer nanocomposites for efficient water hardness removal: a step towards healthier drinking water

Abstract

A new, non-toxic, environmentally friendly nanocomposite, based on graphene oxide and biopolymers was developed as an effective adsorbent for water hardness removal. Graphene oxide was synthesized by a modified Hummers' method, whereas crosslinked carboxymethyl cellulose (CMC) and chitosan were used as biopolymers. Montmorillonite (MMT) was utilized as an additive to enhance the adsorbent's performance. The solubility and adsorption behaviours of the prepared materials were investigated in respect to calcium ions (Ca2+) and magnesium ions (Mg2+). Among the prepared materials, a film containing graphene oxide (GO), crosslinked carboxymethyl cellulose (CMC), and montmorillonite (MMT), denoted as GO-CMC-MMT-3, exhibited the highest water softening capacity. The successful synthesis of the materials was confirmed through scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and ultraviolet-visible spectroscopy (UV-Vis). The optimal pH for the adsorption process was around 6–7. Kinetic studies showed that second-order kinetic model described the adsorption process. The thermodynamic analysis indicated that the process was endothermic in nature and showed a reduced degree of spontaneity at the given conditions. The Langmuir isotherm model was the best fit, and the adsorption capacities were 6.46 mg g−1 for Mg2+ and 7.98 mg g−1 for Ca2+, which indicated the formation of a monolayer of cations on homogeneous adsorption sites. Further, an investigation on the reusability of gravity filtration was carried out, demonstrating the practical utility of the GO-CMC-MMT-3 membrane in real-life water treatment.

Graphical abstract: Graphene oxide – polymer nanocomposites for efficient water hardness removal: a step towards healthier drinking water

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
23 Jan 2025
Accepted
17 Jun 2025
First published
05 Aug 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 27356-27368

Graphene oxide – polymer nanocomposites for efficient water hardness removal: a step towards healthier drinking water

P. H. P. Panapitiya, T. Weerakoon, M. S. Fernando, A. K. D. V. K. Wimalasiri, K. M. N. de Silva and R. M. de Silva, RSC Adv., 2025, 15, 27356 DOI: 10.1039/D5RA00562K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements