A sustainable and efficient method for sequential extraction of lutein and lipid from deep eutectic solvent pretreated Chlorella pyrenoidosa†
Abstract
Microalgae biomass is regarded as a potential feedstock for valuable compounds such as pigments, lipids and proteins. However, development of single molecule extraction processes is the most common practice. A green multiproduct extraction approach is needed for economically sustainable process development of the microalgal industry. Therefore, this study aims to investigate the sequential extraction of lutein and lipid from dry and wet Chlorella pyrenoidosa biomass pretreated with a choline chloride-based deep eutectic solvent (DES) under a sustainable biorefinery scheme. In this context, we have assessed the kinetic modeling of the solid–liquid extraction process for the aforementioned compounds, focusing on the effects of temperature and time. The maximum lutein (3.80 mg g−1) and lipid (95.0 mg g−1) contents from dry biomass were obtained at 45 °C in 40 min and at 70 °C in 90 min, respectively. From wet biomass, the maximum lutein (2.57 mg g−1) and lipid contents (87.47 mg g−1) were obtained at 35 °C in 40 min and at 70 °C in 90 min, respectively. The kinetics of the solvent-based extraction process for lutein and lipids were assessed via first-order and second-order kinetic models with an associated investigation of kinetic parameters, such as rate constants, saturation concentration and activation energies. We found that temperature is an important parameter that influences the extraction of all compounds and also has a significant impact on the kinetic parameters. Toxicity evaluation of the DES and economic assessment of DES vs. ionic liquids (ILs) were performed. The synthesis cost of the DES is lower than that of ILs, and Escherichia coli JM109 survivability assessment confirms the DES as a non-toxic solvent. The present study provides valuable insights into the sequential extraction for a high-value multiproduct biorefinery.