Issue 36, 2025, Issue in Progress

A method for efficient separation of polystyrene nanoplastics and its application in natural freshwater

Abstract

Nanoplastics (NPs) are an emerging contaminant in natural freshwater environments. However, there is a lack of analytical methods for separating and characterizing NPs by particle size, which is essential for analyzing their environmental behavior. Asymmetrical flow field-flow fractionation (AF4) is considered a reliable technique suitable for separating and characterizing the particle size of macromolecules, colloids, and particles. In this work, we report a method for separating and characterizing the size of polystyrene nanoplastics (PS NPs) in freshwater environments using AF4 coupled with MALS and UV-vis detectors. By optimizing the injection volume, mobile phase composition, cross-flow rate, and detector flow rate, we achieved the separation of 50 nm and 100 nm PS NPs within 40 min. The average mass recovery rate reached 88.5%, with relative standard deviations of less than 10% for different indicators in repeated measurements. The R2 value of the linear regression between concentration and UV peak area exceeded 0.99. We applied this method to natural freshwater media and analyzed the particle sizes of particles added to the freshwater media for 0 and 48 hours using dynamic light scattering (DLS). The results revealed that, despite the appearance of a small number of particle aggregates with sizes close to 250 nm in some freshwater media after 48 hours, the optimized AF4 method still effectively separated the majority of the original unaggregated particles. This effective separation demonstrates the practical feasibility of applying the AF4 method to environmental water samples.

Graphical abstract: A method for efficient separation of polystyrene nanoplastics and its application in natural freshwater

Supplementary files

Article information

Article type
Paper
Submitted
17 Jan 2025
Accepted
27 Jul 2025
First published
19 Aug 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 29217-29229

A method for efficient separation of polystyrene nanoplastics and its application in natural freshwater

P. Ren, S. Luo, L. Wang, Y. Chi and Y. Tang, RSC Adv., 2025, 15, 29217 DOI: 10.1039/D5RA00409H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements