Issue 12, 2025, Issue in Progress

Decarburization, denitrification characteristics and microbial community analysis of a full-scale two-stage anoxic–oxic process for treating refractory coking wastewater

Abstract

Coking wastewater is a representative intractable industrial wastewater, which contains plenty of organic pollutants and nutrient nitrogen and needs to be treated effectively. The decarburization, denitrification characteristics and microbial community composition and structure of coking wastewater treated by a full-scale two-stage anoxic–oxic (A/O) process were systematically investigated. The results showed that the full-scale two-stage A/O process exhibited outstanding decarburization and denitrification capability with a removal efficiency above 90% for chemical oxygen demand (COD), ammonium nitrogen (NH4+–N), and total nitrogen (TN) in coking wastewater. Different biological reaction tanks in the two-stage A/O process played various roles in coking wastewater treatment. COD was mainly removed in the first stage anoxic tank (A1), TN was mainly removed in A1 and the second stage anoxic tank (A2), and NH4+–N was mainly removed in the first stage oxic tank (O1). The function of different biological reaction tanks was highly associated with the composition and structure of the microbial community. The differential microorganisms in different biological reaction tanks were determined by multidimensional analysis. Thiobacillus, Thauera, Thioalkalispira, Pedomicrobium, Azoarcus, etc, were the key differential microorganisms in A1. Mycobacterium, Nitrospira, Acinetobacter, Pseudomonas, Nitrosomonas, etc, were the key differential microorganisms in O1. Bacillus, Thiobacillus, Mesorhizobium, Pusillimonas, etc, were the key differential microorganisms in A2. Truepera, Legionella, Sphingobium, Pseudomonas, etc, were the key differential microorganisms in the second stage oxic tank (O2). Augmenting the key microorganisms in different biological reaction tanks is crucial for boosting the treatment effect of actual coking wastewater.

Graphical abstract: Decarburization, denitrification characteristics and microbial community analysis of a full-scale two-stage anoxic–oxic process for treating refractory coking wastewater

Supplementary files

Article information

Article type
Paper
Submitted
09 Jan 2025
Accepted
21 Mar 2025
First published
27 Mar 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 9398-9407

Decarburization, denitrification characteristics and microbial community analysis of a full-scale two-stage anoxic–oxic process for treating refractory coking wastewater

J. Hu, B. Xu, J. Yan and G. Fan, RSC Adv., 2025, 15, 9398 DOI: 10.1039/D5RA00218D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements