Colloidal quantum dots: surface and interface engineering for light-driven hydrogen production
Abstract
Solar energy is the most abundant and clean energy resource for the production of hydrogen, which is inexpensive but requires robust semiconductors. Colloidal quantum dots (CQDs) are considered an ideal semiconductor for hydrogen production. Although light-driven hydrogen production systems have been explored for multifarious CQD-based materials and devices, a comprehensive summary on surface and interface engineering has been rarely reported. In this review, we discuss the surface and interface modification strategies for CQD-based light-driven hydrogen production and emphasize on direct light-driven hydrogen generation systems categorized into photoelectrochemical cells and photocatalysis systems. Furthermore, we describe the recent research advances in this growing field by highlighting various strategies developed for the optimization of surface and interface characteristics, such as core–shell structural design, passivation layer modification, surface ligand optimization, heterostructure construction, co-catalyst loading, and defect engineering. Finally, a future outlook on and the challenges in surface and interface regulation of CQD-based light-driven hydrogen production systems are highlighted. It is expected that this review will stimulate continued interest in harnessing the significant potential of CQDs for solar-to-hydrogen conversion.