Removal of tetracycline antibiotics from agricultural wastewater efficiently using natural attapulgite functionalized MIL-53(Fe): adsorption mechanism and thermodynamic study†
Abstract
An excessive utilization of tetracycline antibiotics (TCs) in aquaculture and livestock farming significantly threatens human health and the vitality of aquatic environments. In this work, we used a one-pot hydrothermal approach with APT@MIL53-X hybrid material to achieve the selective removal of TC and OTC from agricultural wastewater. APT@MIL53-X showed significant chemical stability in the 3–10 pH range. Analysis of the adsorption results using adsorption kinetics, adsorption isotherm studies and adsorption thermodynamics indicated the presence of a monolayer physicochemical adsorption process with a maximum equilibrium adsorption of 600.43 mg g−1 for TC (removal efficiency of 93.5%) and 537.71 mg g−1 for OTC (removal efficiency of 91.4%). The elimination of TCs was not significantly impacted by the common buffer system of solution or the presence of water. Furthermore, a number of characterization techniques, including FT-IR and XPS, suggested that electrostatic interactions, π–π stacking, and hydrogen were potential adsorption processes. APT@MIL53-X showed stable recycling performance, maintaining a stable adsorption amount and chemical stability after six adsorption–desorption cycles of use, which proved that APT@MIL53-X has application possibilities for the agricultural wastewater treatment process. This study illustrates that APT@MIL53(Fe)-X hybrid material offers a novel method for the selective and effective elimination of agricultural wastewater.