Issue 8, 2025

Solvent extraction of boron from mildly alkaline salt lake brine in Tibet, China

Abstract

Since the level of resource depletion is maintained at a high level, the recovery of boron from salt lake brine has become an effective way to meet the increasing demand for boron. This study investigates the optimization of boron extraction from the weakly alkaline brine of the Laguocuo Salt Lake (LGCSL) in Tibet, China, a representative of Tibetan weakly alkaline salt lakes. We evaluated the efficacy of 2,2,4-trimethyl-1,3-pentanediol (TMPD) as an extractant within a solvent mixture of 2-butyl-1-octanol (C12–OH) and sulfonated kerosene. The extraction performance was systematically assessed through single-stage and multi-stage counter-current extraction experiments, examining variables such as extractant type, concentration, pH, temperature, and the presence of co-existing ions. Our results demonstrate that optimal boron extraction is achieved under conditions of pH 8.0, an organic-to-aqueous phase ratio (O/A) of 1 : 1.5, and lower temperatures. Under these parameters, single-stage extraction efficiency surpassed 83%, while a three-stage process achieved an impressive 98.61% efficiency. Stripping experiments identified sodium hydroxide (NaOH) as an effective stripping agent, with a concentration of 0.3 mol L−1 and a phase ratio of 2 : 1 at room temperature yielding high stripping efficiency and significant boron concentration enrichment. To elucidate the extraction mechanism, Raman spectroscopy was employed to characterize the structural interactions between TMPD and boron complexes in the organic phase. Additionally, the influence of carbonate (CO32−) and bicarbonate (HCO3) ions, prevalent in alkaline brines, on boron extraction was investigated. These ions were found to affect the extraction efficiency, likely through competitive interactions or complex formation, highlighting the necessity of their consideration in optimizing the extraction process. This study provides both theoretical insights and practical experimental data essential for the efficient recovery of boron from weakly alkaline salt lake brines.

Graphical abstract: Solvent extraction of boron from mildly alkaline salt lake brine in Tibet, China

Article information

Article type
Paper
Submitted
18 Dec 2024
Accepted
20 Feb 2025
First published
26 Feb 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 6342-6356

Solvent extraction of boron from mildly alkaline salt lake brine in Tibet, China

Y. Huang, H. Lu, S. Xie, C. Zhao, J. Dong, L. Xu, Y. Qin, C. Shi and X. Peng, RSC Adv., 2025, 15, 6342 DOI: 10.1039/D4RA08859J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements