Issue 12, 2025

Novel dual-network-structured hydrogel microspheres for efficient atmospheric water collection

Abstract

Atmospheric water harvesting (AWH) technology is widely regarded as a promising technology to solve the problem of fresh water shortage. Hygroscopic salt–hydrogel composites have attracted extensive attention due to their high hygroscopic salt-carrying capacity. However, their complex preparation process, salting-out and low water collection efficiency restrict their development. In this study, we prepared calcium alginate (CA) and [2-(methylpropoxy) ethyl dimethyl-(3-propyl sulfonic acid)ammonium hydroxide (PDMAPS)] double-network-structured hydrogel microspheres using a novel drip-free polymerization method. Then, a CA/PDMAPS/CNT/LiCl composite adsorbent was prepared by adding carbon nanotubes (CNTs) and LiCl. The preparation process was simple and suitable for mass production. Zwitterionic groups in the double-network structure (cationic –N+(CH3)2 and anionic –SO3) could produce electrostatic effects with Li+ and Cl, thereby binding LiCl and solving the traditional salting-out problem. A binary salt system could also be formed, which greatly enhanced water-collection capacity. At 22 °C with RH = 90%, the maximum water collection of the hydrogel microspheres was 3.586 g g−1. Compared with single-network-structured hydrogels, the reported system exhibited an enhancement of 434% in its water collection efficiency. Under natural light, it desorbed more than 80% of the adsorbed water in 3–4 h. In summary, the dual-network-structured hydrogel microspheres represent a promising material for atmospheric water collection.

Graphical abstract: Novel dual-network-structured hydrogel microspheres for efficient atmospheric water collection

Supplementary files

Article information

Article type
Paper
Submitted
14 Dec 2024
Accepted
15 Mar 2025
First published
01 Apr 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 9546-9554

Novel dual-network-structured hydrogel microspheres for efficient atmospheric water collection

K. Chen, S. Han, S. Zhang, H. Du, Z. Zhang, J. Wang, X. Luo and Y. Li, RSC Adv., 2025, 15, 9546 DOI: 10.1039/D4RA08736D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements